Lesson Plan (Session 2025-2026)
Program: B.Sc. (Life Sciences/Physical Sciences)

Semester-I DSC (Fundamental Chemistry - I) Course code: 24CHEM401DS01

Maximum Marks: 50 (External Marks: 35, Internal Marks: 15) Credits: 02 Hours per Week: 02

Duration of Examination: 02 Hrs.

Sr. No.	Topics	Week	Additional
1.	Ionic bond lattice energy, Born-Haber cycle and its applications.	July 25 week 4	
2.	Fajan's rules, hydration energy, bond moment, dipole moment and percentage ionic character. Resonance and resonance energy: study of some inorganic and organic compounds.	August 25 week 1	
3.	Molecular Orbital Approach: LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combination of atomic orbitals, non-bonding combination of orbitals.	August 25 week 2	
4.	MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as O_2^- , O_2^{2-} , N_2^- , CO, NO ⁺ , CN ⁻ . Comparison of VB and MO approaches.	August 25 week 3	
5.	Oxides-structures of oxides of N, P. Oxyacids-structure and relative acid strengths of oxyacids of nitrogen and phosphorus. Structure of white, yellow and red phosphorus.	August 25 week 4	Class Test
6.	Oxyacids of sulphur – structures and acidic strength, H ₂ O ₂ -structure, properties and uses. Basic properties of halogen, interhalogen compounds-types and properties, halogen-acids and oxyacids of chlorine – structure and comparison of acidic strength.	September 25 week 1	
7.	Acids and Bases: Brönsted–Lowry concept, conjugate acids and bases, relative strengths of acids and bases, effects of substituent and solvent, differentiating and levelling solvents. Lewis acid-base concept, classification of Lewis acids and bases, Lux-Flood concept.	September 25 week 2	
8.	Maxwell's distribution of velocities and energies (derivation excluded), calculation of root mean square velocity, average velocity and most probable velocity. Collision diameter, collision number, collision frequency and mean free path.	September 25 week 3	
9.	Deviation of real gases from ideal behaviour, derivation of Vander Waals Equation of state and its applications in the calculation of Boyle's temperature (compression factor), explanation of behavior of real gases using Vander Waals equation.	September 25 week 4	Assignment
10.	Critical Phenomenon: Critical temperature, critical pressure, critical volume and their determination. PV isotherms of real gases, continuity of states, isotherms of Vander Waals equation, relationship between critical constants and Vander Waals constants, compressibility factor. Law of corresponding states.	October 25 week 1	
11.	Electronic displacements and its applications, reaction intermediates and concept of aromaticity. Concept of isomerism, types of isomerism, optical isomerism, optical activity.	October 25 week 2	
12.	Vacations (Diwali)	October 25 week 3	
13.	Elements of symmetry, molecular chirality, enantiomers, stereogenic centre, properties of enantiomers, chiral and achiral molecules with two stereogenic centres, diastereomers, three and erythro diastereomers, meso compounds.	October 25 week 4	
14.	Resolution of enantiomers, inversion, retention and racemization, relative and absolute configuration, sequence rules, R & S system of nomenclature.	November 25 week 1	
15.	Review and revision of syllabus/some important questions	November 25 week 2	

Lesson Plan (Session 2025-2026)
Program: B.Sc. (Life Sciences)

Semester-I SEC (Role of Chemistry in Society)

Maximum Marks: 50
Credits: 02

(Internal Marks: 20+20+10)
Hours per Week: 02

Course code: 24CHE401SE01

Sr.	Topics	Week	Additional
No.	Analysis of Soil and Water Composition of soil Consent of all and all	August 25	
1.	Analysis of Soil and Water: Composition of soil, Concept of pH and pH measurement of soil, complexometric titrations, Chelation, chelating agents,	August 25 week 4	
1.	use of indicators.	WCCK 4	
2.	Estimation of calcium and magnesium ions in soil, Definition of pure water,	September 25	
	sources responsible for contaminating water, water sampling methods.	week 1	
3.	Water purification methods, determination of dissolved oxygen of a water	September 25	Assignment-I
	sample	week 2	
4.	Chemistry in Cosmetics: A general study including preparation and uses of	September 25	
	the following: Hair dye, Soap, Shampoo, Suntan lotions, Talcum powder.	week 3	
5.	A general study including preparation and uses of the following: Face powder,	September 25	Class Test -I
	Lipsticks, nail enamel.	week 4	
	Pesticides: General introduction to pesticides (natural and synthetic), benefits	October 25	
6.	and adverse effects, changing concepts of pesticides. Brief introduction of	week 1	
	structure activity relationship, synthesis and technical manufacture and uses of		
	representative pesticides in the following classes: organochlorines		
	(gammexene).		
	Brief introduction of structure activity relationship, synthesis and technical	October 25	Assignment-II
7.	manufacture and uses of representative pesticides in the following classes:	week 2	
	organophosphates (malathion).		
8.	Vacations (Diwali)	October 25	
		week 3	
9.	Experimental Techniques: Basic principle of pH metric, potentiometric and	October 25	Class Test -II
	conductometric titrations.	week 4	
10.	Applications of conductivity measurements: determination of degree of	November 25	Presentation
	dissociation, determination of K _a of acids and base.	week 1	
11.	Buffer solution, buffer action, Henderson-Hazel equation, buffer mechanism of	November 25	
	buffer action.	week 2	
L			

Lesson Plan (Session 2025-2026)

Program: B.Sc. (Life Sciences/Physical Sciences)

Semester-III DSC (Fundamental Chemistry - III)

Maximum Marks: 50 (External Marks: 35, Internal Marks: 15)
Credits: 02 Hours per Week: 02

Course code: 25CHEM403DS01

Duration of Examination: 02 Hrs.

Sr.	Topics	Week	Additional
No.			
	Chemistry of Transition series elements: General characteristics of transition	July 25	
	metals, brief discussion of differences between the first, second and third	week 4	
	transition series.		
	Stability of various oxidation states, magnetic and spectral properties. Binary	August 25	
2.	compounds and complexes illustrating relative stability of their oxidation states.	week 1	
	Chemistry of Ti, V, Cr, Mn, Fe, Co, Mo and W in various oxidation states.		
	Some important compounds as laboratory reagents: potassium dichromate,	August 25	
3.	potassium permanganate, potassium ferrocyanide, potassium ferricyanide,	week 2	
	sodium nitroprusside and sodium cobaltinitrite.		
	Thermodynamics-II: Third law of thermodynamics: Nernst heat theorem,	August 25	
4.	concept of residual entropy, evaluation of absolute entropy from heat capacity	week 3	
	data.		
5.	Gibbs and Helmholtz functions, Gibbs function (G) and Helmholtz function (A)	August 25	Class Test
	as thermodynamic quantities, A & G as criteria for spontaneity.	week 4	
6.	Thermodynamic equilibrium and their advantage over entropy change. Variation	September 25	
	of G and A with P, V and T. Partial molar quantities.	week 1	
	Electrochemistry: Arrhenius theory of ionization, Ostwald's Dilution Law.	September 25	
7.	Debye-Huckel-Onsager's equation for strong electrolytes (elementary treatment	week 2	
	only), transport number, definition and determination by Hittorf's methods.		
	Electrolytic conduction, factors affecting electrolytic conduction. Applications of	September 25	
8.	conductivity measurements: determination of dissociation constant (Ka) and	week 3	
	degree of dissociation, determination of solubility product of sparingly soluble		
	salts.		
	Conductometric titrations. Definition of pH and pKa, buffer solution, buffer	September 25	Assignment
1.0	action, Henderson – Hasselbalch equation, buffer mechanism of buffer action.	week 4	
	Reversible electrodes – Metal- metal ion gas electrode, metal – metal insoluble	October 25	
	salt- anion electrode and redox electrode.	week 1	
	Alkyl halides: Nomenclature and classes of alkyl halides, general methods of	October 25	
	preparation, physical properties and chemical reactions.	week 2	
12.	Vacations (Diwali)	October 25	
	N. 1	week 3	
	Mechanisms (SN1, SN2, E1, E2 and E1cb) and stereochemistry of nucleophilic	October 25	
	substitution reactions of alkyl halides with energy profile diagrams, elimination	week 4	
	vs substitution reactions.		
	Aryl halides: Methods of preparation, Reactions: Aromatic nucleophilic	November 25	
	substitution and effect of substituents on reactivity. Benzyne Mechanism:	week 1	
	KNH ₂ /NH ₃ (or NaNH ₂ /NH ₃).)	
	Reactivity and relative strength of C-halogen bond in alkyl, allyl, benzyl, vinyl	November 25	
	and aryl halides.	week 2	

Lesson Plan (Session 2025-2026)

Program: B.Sc. (Life Sciences/Physical Sciences)

Semester-III SEC (Batteries)

Maximum Marks: 50

Credits: 02

Course code: 25CHE403SE01 (Internal Marks: 20+20+10)

Hours per Week: 02

Sr.	Topics	Week	Additional
No.			
1.	Basic Concepts: Components of cells and batteries, classification of cells and	August 25	
	batteries, operation of a cell,	week 4	
2.	Theoretical cell voltage, capacity, energy, specific energy and energy density	September 25	
	of practical batteries.	week 1	
	Battery Design and Factors Affecting Battery Performance: General	September 25	Assignment-I
3.	introduction, designing to eliminate potential safety problems, Battery	week 2	
	safeguards when using discrete batteries.		
4.	Battery construction, Design of rechargeable batteries, factors affecting battery	September 25	
	performance.	week 3	
5.	Primary Batteries: General characteristics and applications of primary	September 25	Class Test -I
	batteries, types and characteristics of primary batteries.	week 4	
	Comparison of the performance characteristics of primary battery systems,	October 25	
6.	recharging primary batteries.	week 1	
	A) Zinc-Carbon Batteries (Leclanche´ and Zinc Chloride Cell Systems):		
	General characteristics, cell chemistry, types of cells and batteries,		
	construction, cell components.		
	B) Magnesium and Aluminum Batteries: General characteristics, cell	October 25	Assignment-II
7.	chemistry, construction of Mg/MnO2 batteries, performance characteristics of	week 2	
	Mg/MnO2 batteries, sizes and types of Mg/MnO2 batteries, other types of		
	magnesium primary batteries.		
8.	Vacations (Diwali)	October 25	
		week 3	
9.	Secondary Batteries: General characteristics and applications of secondary	October 25	Class Test -II
	batteries, types and characteristics of secondary batteries.	week 4	
	Comparison of performance characteristics for secondary battery systems and	November 25	Presentation
10.	introduction, chemistry, construction, performance characteristics, charging	week 1	
	characteristics of following batteries: Lead batteries, Lithium ion batteries, Iron		
	electrode batteries.		
	Comparison of performance characteristics for secondary battery systems and	November 25	
11.	introduction, chemistry, construction, performance characteristics, charging	week 2	
	characteristics of following batteries: Nickel-Cadmium, Nickel-Metal hydride,		
	Nickel, Zinc batteries.		

Lesson Plan (Session 2025-2026) Program: B.Sc. III

Semester-V Maximum Marks: 36 Hours per Week: 02 Subject: Inorganic Chemistry (External Marks: 29, Internal Marks: 07) Duration of Examination: 03 Hrs.

Sr.	Topics	Week	Additional
No.			
1.	Limitation of valence bond theory, An elementary idea of crystal field theory.	July 25	
		week 4	
2.	Crystal field splitting in octahedral complexes.	August 25	
		week 1	
3.	Crystal field splitting in tetrahedral and square planar complexes.	August 25	
		week 2	
4.	Factors affecting the Crystal field parameters.	August 25	
		week 3	
5.	A brief outline of thermodynamic stability of complexes.	August 25	Class Test
		week 4	
6.	Factors affecting the stability of complexes, Irving William Series.	September 25	
		week 1	
7.	Substitution reactions of square planar complexes of Pt(II), Trans effect.	September 25	
		week 2	
8.	Types of Magnetic materials, Magnetic susceptibility, Methods of determining	September 25	
	magnetic susceptibility.	week 3	
9.	Spin only formula, L-S coupling, correlation of spin only magnetic moment and	September 25	Assignment
	effective magnetic moment.	week 4	
10.	Orbital contribution to magnetic moments, application of magnetic moment data	October 25	
	for 3d- metal complexes.	week 1	
11.	Selection rule for d-d transitions, Spectroscopic ground states.	October 25	
		week 2	
12.	Vacations (Diwali)	October 25	
		week 3	
13.	Spectrochemical series, Orgel-energy level diagram for d ¹ and d ⁹ states.	October 25	
		week 4	
14.	Discussion of the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion.	November 25	
		week 1	
15.	Review and revision of syllabus/some important questions	November 25	
		week 2	

Lesson Plan (Session 2025-2026) Program: B.Sc. III

Semester-V Maximum Marks: 36 Hours per Week: 02 Subject: Physical Chemistry (External Marks: 29, Internal Marks: 07)
Duration of Examination: 03 Hrs.

Sr.	Topics	Week	Additional
No.			
1.	Black-body radiation.	July 25	
		week 4	
2.	Plank's radiation law.	August 25	
		week 1	
3.	Photoelectric effect, heat capacity of solids, Compton Effect.	August 25	
		week 2	
4.	Wave function and its significance, Postulates of quantum mechanics.	August 25	
		week 3	
	Quantum mechanical operator, commutation relations, Hamiltonial operator,	August 25	Class test
5.	Hermitian operator, average value of square of Hermitian as a positive quantity,	week 4	
	Role of operators in quantum mechanics.		
	To show quantum mechanically that position and momentum cannot be	September 25	
6.	predicated simultaneously, Determination of wave function & energy of a	week 1	
	particle in one dimensional box, Pictorial representation and its significance.		
7.	Optical activity, Polarization-(clausius-Mossotti equation). Orientation of dipoles	September 25	
	in an electric field, dipole moment, included dipole moment.	week 2	
	Measurement of dipole moment-temperature method and refractivity method,	September 25	
8.	dipole moment and structure of molecules. Magnetic permeability, magnetic	week 3	
	susceptibility & its determination. Application of magnetic suscepitibility,		
	magnetic properties-paramagnetism, diamagnetism & ferromagnetism.		
	Electromagnetic radiation, regions of spectrum, basic features of spectroscopy,	September 25	Assignment
9.	statement of Born-oppenheimer approximation. Degrees of freedom.	week 4	
	Diatomic molecules, Energy levels of rigid rotator (semi-classical principles),	October 25	
10.	selection rules, Spectral intensity distribution using population distribution	week 1	
	(Maxwell-Boltzmann distribution), determination of bond length, Qualitative		
	description of non-rigid rotor, isotope effect.		
11.	Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules,	October 25	
	pure vibrational spectrum, intensity.	week 2	
12.	Vacations (Diwali)	October 25	
		week 3	
10	Determination of force constant and qualitative relation of force constant and	October 25	
13.	bond energies, effects of anharmonic motion and isotopic effect on the spectra,	week 4	
	idea of vibrational frequencies of different functional groups.		
	Raman spectra: Concept of polarizibility, pure rotational and pure vibrational	November 25	
14.	Raman spectra of diatomic molecules, selection rules, Quantum theory of Raman	week 1	
	spectra.		
15.	Review and revision of syllabus/some important questions	November 25	
		week 2	

Lesson Plan (Session 2025-2026) Program: B.Sc. III

Semester-V Maximum Marks: 38 Hours per Week: 02 Subject: Organic Chemistry (External Marks: 30, Internal Marks: 08) Duration of Examination: 03 Hrs.

Sr.	Topics	Week	Additional
No.			
1.	Principal of nuclear magnetic resonance, The PMR spectrum, Number of	July 25	
	Signals, Peak Area, Equivalent & Non-equivalent Protons	week 4	
	Position of Signals, Chemical shift, Shielding & deshielding of protons, Proton	August 25	
2.	counting, splitting of signals & coupling constants, Magnetic equivalence of	week 1	
	protons		
	Discussion of PMR Spectra of various molecules: ethyl bromide, n-propyl	August 25	
3.	bromide, isopropyl bromide, 1,1-dibromoethane, 1,1,2-tribromoethane, Ethanol,	week 2	
	acetaldehyde, ethylacetate, toluene, benzaldehyde and acetophenone.		
4.	Simple problems on PMR spectroscopy for structure determination of organic	August 25	
	compounds.	week 3	
5.	Classification & nomenclature. Monosaccharides, Mechanism of osazone	August 25	Class test
	formation.	week 4	
6.	Interconversion of glucose & fructose, chain lengthening & chain shortening of	September 25	
	aldoses.	week 1	
7.	Configuration of monosaccharides, erythro & threo diastereomers, Conversion	September 25	
	of glucose into mannose. formation of glycosides, ethers & esters.	week 2	
8.	Determination of ring size of glucose & fructose, open chain & cyclic structure	September 25	
	of D (+) glucose & D (-) fructose	week 3	
9.	Mechanism of mutarotation Structures of Ribose & Deoxyribose. An	September 25	Assignment
	introduction to disaccharides (maltose, sucrose & lactose).	week 4	
10.	Polysaccharides(starch and cellulose) without involving structure determination.	October 25	
		week 1	
11.	Organomagnesium compounds: the Grignard reagent-formation, structure &	October 25	
	chemical reactions.	week 2	
12.	Vacations (Diwali)	October 25	
		week 3	
13.	Organozinc compound: formation & chemical reactions.	October 25	
		week 4	
14.	Organolithium compounds: formation & chemical reactions.	November 25	
		week 1	
15.	Review and revision of syllabus/some important questions	November 25	
		week 2	